22 marzo 2017

Il Misterioso Mistero dei Misteriosi Dinosauri di Ica [aggiornamento]

Una delle pietre scolpite rinvenute e Ica.

Nell'era dei complotti e delle mistificazioni, degli anti-vaccinisti e delle scie chimiche, niente è più divertente dell'essere un ricercatore scientifico che passa una serata con alcuni colleghi a visionare un “documentario” di pseudo-scienza.
Allacciate le cinture, preparate il pop corn: si parte a caccia dei misteriosi dinosauri di Ica.
In realtà, la storia delle “pietre di Ica” è stata ampiamente smascherata da chi si occupa di analisi razionale e giornalismo critico, quindi vi rimando ad altri siti per conoscere tutta la storia di queste palesi truffe.

Per apprezzare il resto del post, occorre che conosciate almeno superficialmente la storia delle pietre di Ica. In breve, si tratta di pietre (per la precisione, rocce composte in buona parte da andesite) scoperte in una località peruviana (Ica) alcuni decenni fa. Le rocce presentano incisioni artistiche raffiguranti esseri umani, strumenti, animali, tra cui alcuni palesemente ispirati alle ricostruzioni dei dinosauri mesozoici. In quelle più spesso mostrate online, appare un animale vagamente simile ad un Triceratops, uno vagamente stegosauride e vari lucertoloni bipedi molto grossolanamente simili a dei theropodi non-aviani.

I patiti dei complotti e dei misteri ritengono che queste pietre dimostrino la coesistenza di esseri umani e dinosauri mesozoici, il che può indicare (alternativamente) la presenza umana nel Mesozoico oppure la sopravvivenza fino a pochi millenni fa di faune mesozoiche in Sud America.

Le persone razionali e con un minimo di basi scientifiche ridono per questa palese e grossolana bufala. Tutto nella storia delle pietre di Ica trasuda l'odore della bufala. Ovviamente, chi “vuole credere al mistero di Ica” sarà del tutto ostile a qualsiasi spiegazione razionale.

Ad esempio, i più grossolani fan delle pietre sostengono che le datazioni al carbonio14 sulle pietre dimostrino che esse hanno 12 mila anni.
Peccato che l'andesite (la roccia su cui sono presenti le incisioni) non possa essere datata col metodo del carbonio14, il quale richiede, indovinate un po'... della materia organica e non certo un pezzo di roccia.

Ed anche se le rocce fossero datate con altri metodi, ciò ci direbbe l'età del pezzo di andesite, non l'età in cui furono incise. Anche la roccia che forma il David di Michelangelo ha milioni di anni... ma non per questo dovremmo sostenere che la statua fu scolpita milioni di anni fa.

Ma tutto questo è già stato ampiamente spiegato in altre sedi. Io qui mi voglio soffermare sulle immagini dei... chiamiamoli “dinosauri”.

Ogni volta che qualche teorico dei misteri tira in ballo “prove” della coesistenza di uomini e dinosauri, resto colpito dalla grossolanità delle immagini presenti in questi manufatti.
C'è sempre un Triceratops cicciotto con proporzioni simili ad un giocattolo. C'é sempre uno Stegosaurus cicciotto che ricorda un pupazzo più che un animale. Che strano, non trovate? Stegosaurus è conosciuto a livello fossile solamente nel Giurassico Superiore del Nord America. Nessuno stegosauride è più recente del Cretacico Inferiore. Ma poi, come per magia, ecco apparire stegosauri giurassici nordamericani in rocce scolpite in Sud America e Indocina. Possibile che questo animale abbia popolato tutto il mondo per 150 milioni di anni, ma poi si trovino le sue tracce solo in qualche roccia scolpita. Lo stesso discorso vale per Triceratops.

Curioso, proprio i dinosauri più famosi a livello popolare, più illustrati nei fumetti, più frequentemente raffigurati e trasformati in giocattoli nel XX secolo, sono anche i soggetti preferiti in queste antichissime civiltà perdute.



Ma che curiosa coincidenza...

Oggi conosciamo dozzine di altri ceratopsidi fossili, ma stranamente nessuno è vissuto assieme agli antichi autori delle sculture. Solo Triceratops...

Lo stesso discorso vale per le altre raffigurazioni di dinosauri che i fautori delle ipotesi “alternative” ritengono siano incisi nelle rocce di Ica. Che curiosa somiglianza iconografica lega i dinosauri di Ica con le immagini dei dinosauri presenti nei fumetti popolari. I dinosauri di Ica sono più simili alla paleoarte degli anni '60 piuttosto che alla reale anatomia che abbiamo ricostruito negli ultimi 40 anni. Ma che cosa curiosa... viene quasi il sospetto che ad ispirare gli autori delle incisioni di Ica non fu la visione diretta di dinosauri vivi e vegeti, quanto piuttosto la copiatura ingenua e grossolana di qualche dozzinale fumetto di fantascienza di 50 anni fa.

Ovviamente, mi sbaglio: è molto più plausible che qualche Stegosaurus sia sopravvissuto dalla fine del Giurassico fino alla fine del Cretacico, che poi abbia fatto amicizia con qualche Triceratops, che insieme essi siano emigrati in Perù, che poi si siano nascosti per 66 milioni di anni, e che nel frattempo abbiamo assunto le fattezze grossolane della peggiore paleoarte degli anni '60, poi siano usciti dal loro nascondiglio giusto il tempo per farsi immortalare da una misteriosa civiltà precolombiana della quale poi non abbiamo più rinvenuto altro se non qualche roccia scolpita, per poi estinguersi (civiltà di Ica e dinosauri) definitivamente.
Sì, ora tutto quadra...

Postilla:



Un lettore del blog, Matteo Melita, mi segnala (sulla pagina Facebook del blog) la notevole somiglianza tra uno dei “dinosauri di Ica” e la ricostruzione di Iguanodon realizzata da John Sibbick negli anni '80 (chi avesse una data più precisa è invitato a segnalarla). I due animali sono illustrati con la medesima prospettiva e postura. Inoltre, dettaglio curioso (freccie gialle), a differenza degli altri “dinosauri” scolpiti, questo non trascina la coda a terra e mostra una curiosa linea che divide la coda in due zone (una dorsale e una ventrale), esattamente come l'Iguanodon raffigurato da Sibbick. Ora, siccome ritengo improbabile che John Sibbick sia un fautore delle tesi pseudo-scientifiche sui “dinosauri” di Ica (o che abbia viaggiato nel tempo per copiare le pietre di Ica... che se uno vuole disegnare un dinosauro disponendo di una macchina del tempo non va certo nel basso olocene peruviano), questa immagine dimostra che questa roccia fu scolpita dopo il 1980, ispirandosi in parte alla paleoarte di John Sibbick.

16 marzo 2017

Il Vaccino contro lo Smartphone


Che differenza c'è tra un vaccino ed uno smartphone?

Il primo è un prodotto della ricerca scientifica.
Il secondo è un prodotto della ricerca scientifica.
Il primo richiede enormi investimenti per essere prodotto.
Il secondo richiede enormi investimenti per essere prodotto.
Il primo è brevettato e collaudato dopo un lungo processo di sperimentazione.
Il secondo è brevettato e collaudato dopo un lungo processo di sperimentazione.
Il primo è prodotto da aziende che fatturano miliardi di dollari.
Il primo è prodotto da aziende che fatturano miliardi di dollari.
Il primo è distribuito a livello mondiale.
Il secondo è distribuito a livello mondiale.

Quindi, aldilà delle differenze su come siano realizzati e per quale funzione siano prodotti, un vaccino ed uno smartphone sono categoricamente indistinguibili: entrambi sono prodotti iper-tecnologici frutto di ricerche scientifiche avanzatissime, ricerche e produzioni che solamente le più grandi aziende possono coprire, sviluppare e realizzare.
Né i vaccini né gli smartphone si possono produrre con metodi tradizionali, con piccole imprese o con ricette “naturali”. E se si pensa che i vaccini sono realizzati “solo per fare soldi”, gli smartphone non li realizzano certo per beneficienza...
Eppure, se un'azienda produce vaccini, da molti viene descritta negativamente, boicottata e demonizzata. Se invece produce smarphone, nessuno fa una piega e spende cifre esorbitanti per acquistarne i prodotti.
Se non fosse che la diffusione della assurda mentalità “anti-vaccinista” ha effetti negativi anche su coloro che non la seguono (come ben dimostra la drammatica risalita dei casi di malattie che fino a qualche anno fa erano state debellate grazie alla diffusione dei vaccini), non scriverei un post come questo rivolto ai fanatici dello smartphone.
Ma questo post parla anche di mentalità scientifica e razionale contrapposta a superstizione irrazionale.
E il boicottaggio dei vaccini, quando diffuso da persone che poi non fanno una piega verso tutti gli altri prodotti delle multinazionali tecnologiche, è chiaramente una forma di superstizione irrazionale.
Che uno sia così idiota da spendere centinaia di euro/dollari/yen/rubli per comprare un rettangolo plastificato che fa fotografie e manda sms (per poi gettarlo nell'immondizia dopo un anno), è un problema suo e non mi tocca particolarmente. Ce ne sono di modi stupidi di spendere denaro, ed ognuno può fare quello che vuole col proprio...
Quello che mi lascia basito è constatare la schizofrenia, il bis-pensiero, l'imbecille contraddizione di chi con una parte del cervello rifiuta i vaccini (e non sa spiegare razionalmente il perché di tale rifiuto) e con l'altra parte del cervello acquista tranquillamente gli smartphone (e non sa spiegare il perché), nonostante che entrambi siano il prodotto di “perfide multinazionali mangia-denaro, guidate cinicamente da occulte cricche di sfruttatori al fine di renderci schiavi”.

08 marzo 2017

“Buena Vista”, ovvero: come imparammo a vedere e a riflettere meglio [edit]

Ogni tanto, questo blog esce dal suo particolare assetto theropodologico per esplorare contesti più ampi della paleontologia.
Mr. Tiktaalik (c) John Sandford

In uno studio pubblicato ieri, Maclver et al. (2017) propongono un interessante scenario sulla transizione che, a cavallo tra il Devoniano ed il Carbonifero (400-350 milioni di anni fa) ha portato all’origine dei tetrapodi, i vertebrati terrestri.
Il record fossile dei pesci sarcopterigi del Devoniano-Carbonifero è ormai sufficientemente ricco perché si possa analizzare l'evoluzione dei vari elementi anatomici (e dei corrispettivi ambiti eco-morfo-funzionali) lungo la linea che porta ai tetrapodi “veri e propri” (ovvero, il nodo “Amphibia + Amniota”) con metodi di indagine filogenetica che siano robusti statisticamente. Mentre, fino a qualche decennio fa, questa fase dell'evoluzione dei vertebrati era ridotta (spesso semplificata in modo estremo nei testi divulgativi) ad una manciata di “anelli di transizione” (tra i quali primeggiava la coppia “Eusthenopteron-Ichthyostega”, quasi a rappresentare le guardie doganali ai due lati della frontiera tra “Pisces” e Tetrapoda), ora disponiamo di dozzine di taxa, che illustrano con maggiore dettaglio le varie spinte adattative (spesso divergenti) e la complessità di una radiazione filetica non più riducibile ad una semplice linea di pesci che si trascinano fuori dall'acqua, imparano a camminare, e poi piantano la bandiera sul suolo asciutto.

“It's a small step for a fish. A giant step for fishkind”

02 marzo 2017

Come nuotava Spinosaurus?

Postura semi-eretta bipede per Spinosaurus, modificato da Ibrahim et al. (2014). Non mi pare sia così assurdo...
In un recente post, ho discusso l'ipotesi quadrupede proposta da Ibrahim et al. (2014) su Spinosaurus, ed ho concluso che il femore e tibia di Spinosaurus, come pubblicato da Ibrahim et al. (2014, e informazioni supplementari) non mostrano particolari adattamenti per un nuoto a propulsione generata dalla gamba (foot-propelled): ad esempio, non sono presenti processi laterali distali del femore o una cresta cnemiale ipetrofica. Inoltre, il femore di Spinosaurus mostra adattamenti per sostenere una postura del corpo semi-eretta, interpretazione che rimuoverebbe l'esigenza di una postura quadrupede. Pertanto, penso che i caratteri anatomici citati da Ibrahim et al. (2014) come adattamenti natatori siano piuttosto caratteri che permettono una postura semi-eretta sulla terraferma e che, comunque, sono exaptation in grado di vincere la resistenza dell'acqua quando si cammina (più o meno) immersi.
L'ipotesi di Ibrahim et al. (2014) è interessante per il modo con cui affronta l'evoluzione del nuoto in Spinosaurus. Gli autori citano come modelli morfofunzionali del nuoto di Spinosaurus i cetacei basali ed i coccodrilli. I primi sono mammiferi, i secondi sono pseudosuchi. I primi non hanno caudofemorali (i muscoli citati da Ibrahim et al. come principali propulsori in Spinosaurus), i secondi non hanno postura parasagittale. Insomma, in ambo i casi, modelli non proprio attinenti per spiegare come un theropode possa muoversi in acqua. Peccato che non siano citati mai i theropodi acquatici noti, come i pinguini, gli anseriformi o gli estinti hesperorniti. Gli autori, inoltre, si focalizzano su due tipi di propulsione in acqua: quella basata sulla coda e quella basata sugli arti posteriori, ma omettono di citare un'altra forma di propulsione acquatica: quella basata sugli arti anteriori.
Ciò è bizzarro. I theropodi sono i campioni della locomozione basata sull'arto anteriore, basti pensare agli uccelli che volano, ed in alcuni casi persino nuotano, usando gli arti anteriori.
Il nuoto basato sulla propulsione dell'arto anteriore si è evoluto nei cheloni e in alcuni cladi di uccelli. Il caso più famoso è dato dai pinguini.
La mia ipotesi sulla postura semi-eretta in effetti propone una biologia più simile ad un pinguino che ad un coccodrillo. Possibile che Spinosaurus nuotasse usando spinte simmetriche degli arti anteriori, che “sbracciasse” come nel nuoto di un pinguino? Purtroppo, i resti di arto anteriore in Spinosaurus si limitano ad una singola falange (per ora, preferisco non includere il materiale riferito, tra cui un omero dal Kem Kem, senza una chiara indicazione - basata su sinapomorfie - che quelle ossa siano di spinosauride). Quindi, per discutere l'ipotesi di un nuoto “a braccia” dovrò fare congetture assumendo che Spinosaurus abbia arti anteriori simili a Baryonyx e Suchomimus.
La domanda diventa: “gli arti anteriori degli spinosauridi noti possono permettere un nuoto simile a quello dei pinguini?”.

Per prima cosa, occorre stimare le dimensioni del braccio di Spinosaurus.
L'unico elemento dell'arto anteriore è una falange della mano. Gli autori la interpretano come la prima del secondo dito, sebbene io sia più dell'idea che quella falange sia la prima del primo dito. Ciò non cambia molto per il discorso che voglio sviluppare. In ogni caso, questa falange è molto grande rispetto all'arto posteriore, a sostegno dell'ipotesi che Spinosaurus abbia effettivamente un arto posteriore ridotto dimensionalmente.
Assumendo che questa falange sia la prima del primo dito della mano, essa è lunga circa il 28% del femore. In Afrovenator e Allosaurus, la stessa falange è in proporzione la metà (14% del femore). Se assumiamo che il resto del braccio fosse proporzionato a questa falange, concludiamo che il braccio di Spinosaurus era, rispetto alla sua gamba, grande il doppio rispetto alle braccia di altri theropodi di dimensioni comparabili. Pertanto, se Ibrahim et al. (2014) sostengono che Spinosaurus nuotasse anche tramite spinte della gamba, perché non ammettere che nuotasse anche (o sopratutto) grazie a spinte di un braccio così ben sviluppato?
Proviamo a immaginare il moto natatorio in Spinosaurus come analogo a quello di un pinguino, ovviamente con spinte meno rapide ma più lente e potenti. Usando il braccio di Baryonyx come riferimento, possiamo valutare se questo braccio ha le caratteristiche idonee per funzionare come pagaia. Infatti, non tutte le braccia sono adatte allo stesso modo per funzionare come organi natatori.
Negli uccelli che nuotano usando spinte dell'arto anteriore si osservano delle modifiche nelle ossa rispetto ai non-nuotatori: l'omero è robusto trasversalmente e relativamente piatto anteroposteriormente. Le inserzioni pettorali e bicipitali sono molto sviluppate, per generare una spinta in un mezzo più denso dell'aria. L'ulna è piatta, con il margine posteriore stretto ed affilato.
Tutti questi caratteri sono presenti nell'omero e ulna di Baryonyx (Charig e Milner 1997). Pertanto, assumendo che anche Spinosaurus avesse questi caratteri anatomici, e considerando la relativa dimensione di questo braccio rispetto alla gamba, non vedo motivi per cui Spinosaurus non possa aver usato le braccia per nuotare. Ad essere completi, per funzionare, questa ipotesi richiede alcune modifiche a livello della spalla per permettere un moto simile al battito dell'ala. Tuttavia, queste modifiche a livello del glenoide pettorale sono meno radicali di quelle richieste nell'ipotesi quadrupede, e sono già avvenute nell'evoluzione dei theropodi (in Avialae), quindi, anche in questo caso mi pare una soluzione più parsimoniosa rispetto allo scenario coccodrillo-proto-cetaceo.

Bibliografia:
Charig and Milner (1997). Baryonyx walkeri, a fish-eating dinosaur from the Wealden of Surrey. Bulletin of the National History Museum of London 53:11-70.
Ibrahim et al. (2014). Semiaquatic adaptations in a giant predatory dinosaur. Science 345:1613-1615.

La Fluorescenza Laser rivela la forma del corpo in Anchiornis

Recenti sviluppi delle tecniche di indagine non-invasiva stanno rivoluzionando la paleontologia. Queste tecnologie permettono di vedere ciò che l'occhio non può vedere, ma possono anche analizzare un fossile senza danneggiarlo.
Una di queste nuove tecniche ricorre alla fluorescenza indotta con luce laser, e permette di identificare dettagli nei fossili altrimenti non visibili ad occhio nudo o con altre tecniche (come l'uso della luce ultravioletta).
Wang et al. (2017) applicano questa nuova tecnica di indagine ad una ampia collezione di paraviani di grado anchiornithino dal Giurassico Superiore cinese (tutti riferiti al genere Anchiornis, anche se, va sottolineato, la tassonomia di questi esemplari richiede probabilmente un'indagine più dettagliata...), e ricostruiscono dettagli anatomici delle parti molli ancora conservati in queste lastre.
Ricostruzione di Anchiornis con indicati i vari esemplari usati per lo studio (modificato da Wang et al. 2017).

La ricostruzione della forma corporea di Anchiornis che risulta è sostanzialmente in accordo con quello che era deducibile applicando l'inferenza filogenetica.
Come negli uccelli, nei rettili attuali e come dedotto dalle impronte fossili di altri theropodi, Anchiornis ha cuscinetti carnosi sfasati rispetto alle articolazioni metatarso- e inter-falangeali (a differenza dei vostri polpastrelli mammaliani che sono interfalangeali). Il piede pubico poggia su una cartilagine distale che esternamente aveva una callosità, caratteri in accordo con l'idea che questi dinosauri riposassero “seduti” in modo omologo agli uccelli odierni. L'arto anteriore presenta un propatagio tra il polso e il gomito, il quale era ricoperto di piumaggio. Nella mano, il secondo ed il terzo dito erano funzionalmente connessi in un'unica struttura carnosa: il margine del terzo dito era ricoperto da un pattern scutellato (ricordo che le penne remiganti, come negli uccelli attuali, si inserivano sul secondo dito). Il passaggio dal ventre alla coda è piuttosto netto, in accordo con le ridotte dimensioni dell'ischio. La coda è relativamente stretta e poco muscolosa, anche questo in accordo con il ridotto sviluppo dei processi ossei per l'origine e inserzione della muscolatura caudo-femorale.


Bibliografia:
Wang, X. et al. 2017. Basal paravian functional anatomy illuminated by high-detail body outline. Nature Communications 8, 14576 doi: 10.1038/ncomms14576.

25 febbraio 2017

The rise of the bipedal Spinosaurus


Negli uccelli a coda corta, i muscoli ileofibulari generano una forza estensoria che controbilancia lo spostamento anteriore del baricentro, mantenendo una postura semi-eretta.
Il bauplan (il modello generale della struttura corporea) dei theropodi ha una serie di vincoli che incanalano la traiettoria evolutiva dei vari gruppi, anche quando questi apparentemente deviano marcatamente gli uni dagli altri.
Il principale vincolo biomeccanico nei theropodi è la postura bipede obbligatoria. Questo vincolo detta la seguente regola: caro theropode, puoi modificare e sviluppare qualsivoglia adattamento ti pare, a patto che non vai a mettere in crisi la postura bipede. Il bipedismo funziona fintanto che il baricentro del corpo scarica a livello degli arti posteriori. Qualora il baricentro sia costretto a spostarsi da quella posizione, devono insorgere modificazioni che compensano tale spostamento. Ibrahim et al. (2014) propongono la ormai famigerata ricostruzione quadrupede per Spinosaurus. La loro ipotesi è la risposta radicale all’impossibilità di violare il vincolo del bipedismo nei theropodi. Difatti, siccome la loro ricostruzione scheletrica produce un animale con un baricentro molto spostato anteriormente, essi concludono che ciò imponga l’evoluzione della postura quadrupede. Il loro ragionamento è corretto, nella logica: un theropode bipede con il baricentro spostato così anteriormente non potrebbe funzionare, quindi è da abbandonare, per sostituirlo con un theropode quadrupede.
Va sottolineato che l'ipotesi sostenuta da Ibrahim et al. (2014) è formata da due sotto-ipotesi:
Ipotesi 1: Il baricentro di Spinosaurus era spostato anteriormente.
Ipotesi 2: Per ovviare allo spostamento anteriore del baricentro, Spinosaurus era quadrupede.

Ipotesi 2 deriva necessariamente da Ipotesi 1, tuttavia, Ipotesi 1 può essere valida indipendentemente da Ipotesi 2.
Ovvero, possiamo avere 3 scenari:

Scenario A: Ipotesi 1 è falsa. Conclusioni: Ipotesi 2 non è necessaria. Spinosaurus è bipede.
Scenario B: Ipotesi 1 è vera, ed Ipotesi 2 è falsa. Conclusioni: Spinosaurus era bipede con adattamenti per compensare lo spostamento del baricentro.
Scenario C: Ipotesi 1 è vera, ed Ipotesi 2 è vera. Spinosaurus è quadrupede.

La maggioranza degli autori segue Scenario A. Ibrahim et al. Sostengono Scenario C. Esso è il più radicale, e richiede che ambo Ipotesi 1 e 2 siano vere.
Io ho proposto Scenario B.
Infatti, in alcuni post passati, ho discusso e proposto una possibile soluzione alla controversia: una postura bipede ma non orizzontale, ovvero semi-eretta, potrebbe essere un compromesso tra la validità del baricentro anteriorizzato di Ibrahim et al. (2014) senza dover ricorrere alla postura quadrupede che, ripeto quanto scritto in passato, attualmente non ha alcuna prova anatomica a suo favore (in particolare, ossa del cinto pettorale e del braccio che mostrino adattamenti al quadrupedismo).
Qualcuno potrebbe obiettare che io rifiuto l’ipotesi quadrupede, sostenendo che non ha alcuna prova anatomica a suo favore, ma poi propongo un’alternativa anche questa priva di prove anatomiche a favore.
In realtà, la mia ipotesi ha molte prove a favore, già verificabili nello scheletro di Spinosaurus di Ibrahim et al. (2014).
Per dimostrare la mia ipotesi, una breve digressione negli aviali.

A, regione distale del femore di vari theropodi in vista posteriore. La freccia blu indica la cresta che si estende prossimalmente al condilo laterale. La freccia rosa indica la fossa definita dalla cresta. Spinosaurus condivide questi caratteri con gli uccelli a postura semi-eretta, mentre gli altri theropodi ne sono privi. B, Femori di vari arcosauri in vista laterale. Spinosaurus mostra un femore robusto come negli uccelli a postura semi-eretta. Tuttavia, gli uccelli nuotatori (come Fumicollis) non hanno lo stesso sviluppo ipetrofico della cresta posterolaterale, ed i coccodrilli hanno femori gracili e senza ipertrofie caudofemorali o ileofibulari. C, parte distale dei femori di uccelli nuotatori in vista anteriore. Tutti presentano un marcato sviluppo laterale del condilo fibulare. In Spinosaurus questo è assente. (Immagini modificate da Ibrahim et al. 2014, Hutchinson 2001, Madsen e Welles 2000, Bell e Chiappe 2015).


La principale novità anatomica degli uccelli (in particolare, i pygostiliani, compresi quelli viventi) è la estrema riduzione della coda. Nei theropodi la coda, oltre a fungere da ancoraggio per i principali muscoli che muovono la gamba, è un organo stabilizzatore: essa controbilancia il peso del corpo posto anteriormente al baricentro. Cosa successe al baricentro degli uccelli quando ridussero la coda? Ovviamente, se togliete la coda ad un theropode, il suo baricentro si sposta anteriormente, sbilanciando l’animale. Negli uccelli, questo sbilanciamento fu controbilanciato modificando la postura del corpo, che invece di essere sub-orizzontale come negli altri theropodi è divenuta semieretta. Tecnicamente, gli uccelli hanno potenziato il sistema muscolare deputato all’estensione del bacino, così che questo (e la colonna vertebrale ancorata al bacino) possa essere mantenuto inclinato anterodorsalmente. Il potenziamento del sistema estensore del bacino si ottiene modificando dimensione e posizione di alcuni muscoli del bacino e della gamba, in particolare, il muscolo ileofibulare. Conseguenza di queste modifiche, negli uccelli abbiamo un femore più corto e robusto che negli altri theropodi, il quale mostra inoltre delle robuste aree di attacco per il muscolo ileofibulare. Queste inserzioni scorrono lungo il margine posterolaterale del femore, e negli uccelli sono riconoscibili da alcuni processi ossei prossimali al condilo fibulare. Pertanto, noi possiamo usare questi caratteri che differenziano il femore degli uccelli da quelli degli altri theropodi per differenziare theropodi con postura prettamente orizzontale da quelli con postura semieretta. Un theropode semiorizzontale ha femore più allungato e meno robusto, e non mostra robuste inserzioni ileofibulari. Un theropode semieretto ha femore corto e robusto e mostra marcate inserzioni ileofibulari.

Ibrahim et al. (2014) descrivono il femore del loro esemplare come più corto della tibia (un carattere piuttosto anomalo per un theropode non-cursore di quelle dimensioni!), e molto più robusto dei femori di altri theropodi di dimensioni comparabili. Questi sono due caratteri da theropode semieretto. Gli autori inoltre notano l'ipertrofia del quarto trocantere (origine del muscolo caudofemorale) e propongono che esso fosse sviluppato per generare la propulsione in acqua tramite le gambe. Questa ipotesi è poco plausibile. Nei coccodrilli, il quarto trocantere non è ipertrofico, nonostante che essi generino una spinta natatoria proprio usando la coda. Devo concludere che l'ipertrofia del quarto trocantere non è necessaria ad un arcosauro con coda lunga adattato alla vita in acqua.
Quindi, quale era la funzione del quarto trocantere di Spinosaurus? Siccome l'animale è chiaramente non-cursorio, la funzione più probabile per queste ipetrofie femorali è di natura posturale: il caudofemorale agiva da estensore supplementare dell'ileo, e non per generare una spinta locomotoria.

Questo ci riporta quindi all'ipotesi della postura semi-eretta.

Negli uccelli, che hanno il muscolo caudofemorale atrofizzato e la coda ridotta, il supporto posturale e l'estensione dell'ileo sono mantenuti da vari muscoli del bacino, in particolare il muscolo ileofibulari.
Come sono le inserzioni per il muscolo ileofibulare in Spinosaurus?
Sia il nuovo esemplare di Ibrahim et al. (2014), sia “Spinosaurus B” di Stromer (1934) mostrano chiaramente una robusta cresta lungo il margine posterodistale del femore, che si estende prossimalmente al condilo laterale. Questa cresta delimita una distinta depressione che decorre lateralmente al femore. Questi caratteri non sono presenti in altri grandi theropodi, ma sono sinapomorfie degli uccelli ornithuromorfi, che hanno ridotto la coda e sviluppato adattamenti per controbilanciare lo spostamento anteriore del baricentro, in particolare, un momento estensore per il muscolo ileofibulare, che decorre dalla lama postacetabolare al margine posterolaterale del femore e si inserisce sulla testa della fibula. In analogia con gli uccelli, la combinazione di caratteri nel femore di Spinosaurus indica uno sviluppo significativo del muscolo ileofibulare. Analogamente con il quarto trocantere, dato che Spinosaurus non mostra adattamenti cursori, lo sviluppo di questo muscolo deve essere legato a ragioni posturali più che locomotorie. Pertanto, in analogia con gli uccelli, esso era deputato allo sviluppo di un momento estensorio per il bacino, esattamente come previsto dalla ipotesi della postura semieretta.

Lo scenario A fa una previsione: il femore di Spinosaurus deve essere simile a quello degli altri theropodi di dimensioni comparabili. Ciò è falsificato dalle bizzarre caratteristiche del femore di questo taxon.

Lo scenario B fa una previsione: il femore di Spinosaurus deve mostra adattamenti analoghi a quelli degli uccelli con coda corta, indipendentemente da adattamenti natatori. Questo scenario è confermato dall'osteologia del femore.

Lo scenario C fa una previsione: il femore di Spinosaurus deve mostrare adattamenti alla locomozione in acqua con propulsione generata dalla gamba. Negli uccelli natatori, il femore presenta una espansione laterale del condilo fibulare (freccia arancione nella Figura C), ed una cresta cnemiale ipetrofica. Spinosaurus non mostra alcuno di questi caratteri. Pertanto, la sua gamba non ha adattamenti per generare una spinta efficace nell'acqua.

Concludendo: la combinazione di caratteri visibili nel femore di Spinosaurus indica che questo theropode aveva tutti requisiti per una postura bipede semieretta, la quale è un adattamento per controbilanciare lo spostamento anteriore del baricentro.
Ovvero, non occorre ricorrere alla postura quadrupede per spiegare Spinosaurus.

Le forze muscolari principali in Spinosaurus sulla base delle sue più inusuali aree di inserzione muscolare. In giallo, i muscoli epiassiali dorsali. In rosso, i muscoli ileofibulari. In azzurro, i muscoli caudofemorali. Notare che tutti e tre i distretti generano la medesima forza estensoria a livello della regione anteriore del corpo (triangolo rosso), permettendo e mantenendo una postura semi-eretta.

A questo punto, nasce una domanda molto interessante: è possibile che le espansioni alla base delle spine neurali di Spinosaurus siano degli adattamenti muscolari per “aiutare” il bacino nel mantenimento di una postura semi-eretta? Ovvero, il potenziamento della muscolatura della regione epiassiale toracica potrebbe giocare un ruolo chiave nello sviluppo di una postura semi-eretta.
Questo spiegherebbe la bizzarra espansione basale delle spine neurali dorsali. Già altre volte ho sostenuto che Spinosaurus deve essere spiegato nella sua totalità, senza forzature ed ipotesi ad-hoc. L'ipotesi semi-eretta spiega bene le inusuali caratteristiche della gamba di Spinosaurus, non richiede ipotesi ad-hoc (la postura quadrupede) e fa previsioni che concordano con l'osservazione (l'espansione delle inserzioni epiassiali dorsali alla base delle spine neurali).


Bibliografia:
Bell & Chiappe (2015). Identification of a new hesperornithiform from the Cretaceous Niobrara Chalk and implications for the ecologic diversity among early diving birds. PloS One 10:e0141690.
Hutchinson (2001). The evolution of the femoral osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society. 131:169-197.
Ibrahim et al. (2014). Semiaquatic adaptations in a giant predatory dinosaur. Science 345:1613-1615.
Madsen & Welles (2000). Ceratosaurus (Dinosauria: Theropoda). A revised osteology. Miscellaneous publications Utah Geological Survey: 1-89.